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Abstract. We study an example of instability in presence of a multiplicative noise, namely the sponta-
neous generation of a magnetic field in a turbulent medium. This so-called turbulent dynamo problem
remains challenging, experimentally and theoretically. In this field, the prevailing theory is the Mean-Field
Dynamo [1] where the dynamo effect is monitored by the mean magnetic field. In recent years, it has been
shown on stochastic oscillators that this type of approach could be misleading. In this paper, we develop a
stochastic description of the turbulent dynamo effect which enables us to define unambiguously a threshold
for the dynamo effect, namely by globally analyzing the probability density function of the magnetic field
instead of a given moment.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 47.27.Gs Isotropic turbulence;
homogeneous turbulence – 47.27.Jv High-Reynolds-number turbulence

1 Introduction

Classical stability analysis are usually performed in sys-
tems where the control parameter is a non-fluctuating
quantity, e.g. for laminar flows in hydrodynamics. When
the instability occurs in a random system (e.g. a turbulent
medium), resulting fluctuation of the control parameter,
or multiplicative noise, may generate several surprising
effects that have been studied in a variety of systems.
The possibility of stabilization by noise has first been
evidenced on a Duffing oscillator [2], where the solution
x(t) = 0 is stable for values of the control parameter above
the deterministic threshold. This stabilization is generic
for weak intensities of the noise. For stronger intensity,
however, noise induced transition may also arise in this
system [3]. In the case of a parametric instability, it has
been showed experimentally [4] that the instability is sen-
sitive to the bifurcation nature. In the supercritical case,
oscillatory bursts (corresponding to a signal with a vanish-
ing mean but a most probable value equal to zero) appear
first when the control parameter is increased and are then
replaced by a state where the most probable value is no
more equal to zero. On the contrary, in the subcritical
case, there is coexistence between these two states. This
illustrates a central difficulty of instability in presence of
multiplicative noise associated with an ambiguity regard-
ing the threshold value, which depends on the definition
of the order parameter [5].

The observations and techniques developed in these
simple systems may be used to shed new light on some re-
cent issues associated with the dynamo effect, the process
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of magnetic field generation through the movement of an
electrically conducting medium. In this case, the instabil-
ity results from a competition between amplification of a
seed magnetic field via stretching and folding, and mag-
netic field damping through diffusion. In a laminar fluid,
it is controlled by a dimensionless number, the magnetic
Reynolds number (Rm), which must exceed some critical
value Rmc for the instability to operate. In a turbulent
medium, velocity fluctuations induce fluctuations of the
control parameter, making the turbulent dynamo problem
similar to an instability in the presence of multiplicative
noise. In that respect, recent numerical findings such as
observed in [6] may find a natural explanation. In their
work, the authors observed short intermittent bursts of
magnetic activity separated by relatively long periods, in-
creasing towards the bifurcation threshold. This feature
could be explained in terms of a supercritical instabil-
ity in presence of multiplicative noise since in this case,
the bifurcated state is generally composed of oscillatory
bursts. More generally, the multiplicative noise paradigm
could turn useful to interpret the outcome of recent ex-
periments involving liquid metals. Among the various op-
erating experiments, a clear distinction appears between
set up with constrained or unconstrained geometry. In the
former case [7], the fluctuation level is very weak. The ve-
locity field is then very close to its laminar (mean) value.
In these experiments, dynamos have been observed, at
critical magnetic Reynolds number comparable to the the-
oretical value. In contrast, unconstrained experiments [8]
are characterized by a large fluctuation level (as high as
50 per cent). A surrogate laminar Rmc can then be com-
puted, using the mean velocity field as an input [9] but it is



396 The European Physical Journal B

not clear whether it will correspond to the actual dynamo
threshold, owing to the influence of turbulent fluctuations.

In this paper, we investigate this issue by techniques
developed to study the Duffing oscillator and using a
stochastic description of small-scale turbulent motions.
This subject has been pioneered by Kazantsev [10],
Parker [11] and Kraichnan [12], and further developed
by the Russian school [13]. It has recently been the sub-
ject of a renewed interest, in the framework of anomalous
scaling and intermittency [14], or computation of turbu-
lent transport coefficients and probability density func-
tions (PDF) [15].

2 Model

The dynamic of the magnetic field B in an infinite
conducting medium of diffusivity η and velocity V, is gov-
erned by the induction equation:

∂tBi = −Vk∂kBi + Bk∂kVi + η∂k∂kBi, (1)

with control parameter built using typical velocity and
scale as Rm = LV/η. We decompose the velocity field
into a mean part V̄i and a fluctuating part vi. In most
laboratory experiments, the mean part is provided by the
forcing. As such, it is generally composed of large scales,
while the fluctuating part collects all short time scales,
small-scale movements. In this regard, it is natural to con-
sider the fluctuating part of the velocity as a noise, to be
prescribed or computed in a physically plausible manner.
The simplest, most widely used shape is the Gaussian,
delta-correlated fluctuations, the so-called “Kraichnan’s
ensemble”:

〈vi(x, t)vj(x′, t′)〉 = 2Gij(x,x′)δ(t − t′). (2)

Equation (1) then takes the shape of a stochastic par-
tial differential equation for B. In that respect, we note
that the induction equation is linear and does not include
explicit back reaction term allowing saturation of any po-
tential growth in the dynamo regime. This back reaction
is provided through the velocity which is subject to the
Lorentz-Force, a quadratic form of B. Many studies of
the dynamo onset adopt a kinematic procedure, where
the Lorentz-Force is neglected. This approximation is rel-
evant only for linear dynamo mechanisms and cannot be
used whenever the dynamo onset is of nonlinear nature.
Another problem of the kinematic procedure arises when
considering stochastic equations. Indeed, linear stochastic
equations renders the threshold determination ill-posed
(it leads to a threshold value dependent on the consid-
ered moment [3]). For this reason, we prefer to work with
a modified induction equation, so as to model this non-
linear back reaction. The back reaction of the magnetic
field is indeed responsible for the saturation of the dy-
namo to a finite value of the magnetic field. This state
can be reached by retraction both on the large scales (V̄i)
and small scales (vi) of turbulence. This can influence the
value of the growth rate of the magnetic field above the

threshold but we strongly believe that it will not play
any role in the determination of the threshold value, at
least for linear instability mechanism. This is similar to
the case of the Duffing oscillator where the threshold is
given by the Lyapunov exponent of the linearized oscil-
lator [3]. Therefore, the synthetic back reaction we intro-
duce is just a way to avoid magnetic field divergence, not
to explore possible nonlinear regimes. Note that we could
avoid such a problem by performing a local analysis (see
discussion after Eq. (10)) of the Fokker-Planck equation
instead of deriving the whole probability distribution.

A practical way of including the effect of the Lorentz
force at the onset of the nonlinear regime is to add a sat-
urating term in the induction equation. Symmetry con-
siderations then favor a term like −cB2Bi. In some sense,
this modification is akin to an amplitude equation, and the
cubic shape for the non-linear term could be viewed as the
only one allowed by the symmetries. Such a procedure has
been validated by [16] in the case of the saturation of a
Ponomarenko dynamo. Such a cubic form has also been
evidenced by Boldyrev [15] by assuming the equality of
viscous and dynamical stresses in the Navier-Stokes equa-
tion at the onset of backreaction. In the sequel, we show
that the precise form of the nonlinear term does not affect
the threshold value, which only depends on the behavior
for |B| → 0.

A further difficulty is associated with the presence of
the diffusive terms. The direct consideration of diffusive
terms in the stochastic formulation requires functional
derivative and integration, hindering simple analytical de-
scription. We propose to model them partially through
an additional “molecular” homogeneous noise ξi(t), su-
perposed to and uncorrelated from the velocity fluc-
tuation [17], with correlation function 〈ξi(t)ξj(t′)〉 =
2ηδijδ(t − t′). In the sequel, we show that this choice
provides some sort of saturation for the moments of var-
ious order, similar to the role of a viscosity. Damping of
magnetic field fluctuations, however, is not properly taken
account by this model.

3 Fokker-Planck equation

Using standard techniques [15,18], one can then derive
the evolution equation for P (B,x, t), the probability of
having the field B at point x and time t (we assume an
homogeneous turbulence for simplicity):

∂tP = −V̄k∂kP − (∂kV̄i)∂Bi [BkP ] + ∂k[βkl∂lP ] (3)
+c∂Bi [B

2BiP ] + 2∂Bi [Bkαlik∂lP ]
+µijkl∂Bi [Bj∂Bk

(BlP )],

with the following turbulent tensors:

βkl = 〈vkvl〉 + ηδkl, αijk = 〈vi∂kvj〉 (4)
and µijkl = 〈∂jvi∂lvk〉.

Due to incompressibility, the following relations hold:
αkii = µiikl = µijkk = 0.
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The physical meaning of these tensors can be found
by analogy with the “Mean-Field Dynamo theory” [1,19].
Indeed, consider the equation for the evolution of the mean
field, obtained by multiplication of equation (3) by Bi and
integration:

∂t〈Bi〉 = −V̄k∂k〈Bi〉 + (∂kV̄i)〈Bk〉 − 2αkil∂k〈Bl〉
+βkl∂k∂l〈Bi〉 − c〈B2Bi〉. (5)

This equation resembles the classical Mean Field Equa-
tion of dynamo theory, with generalized (anisotropic) “α”
and “β”. The first effect leads to a large scale instabil-
ity for the mean-field, while the second one is akin to a
turbulent diffusivity. A few remarks are in order at this
point: i) our mean field equation has been derived with-
out assumption of scale separation. ii) The tensor µ does
not appear at this level. In the sequel, it will be shown to
govern the stochastic dynamo transition.

For this, we need to identify the threshold as a function
of the noise properties. Here, we follow an idea by Mallick
and Marcq [3], and focus on the properties of the station-
ary PDF of the system. Indeed, below the transition, the
only stable state is B = 0 and the PDF should be a Dirac
delta function. Above the transition, other equilibrium
states are possible, with non zero magnetic field. However,
in the general case, it is not possible to find analytical so-
lution for the equation (3). We thus decompose the mag-
netic field in its norm and direction. Changing variable
Bi = Bei where e is a unit vector (and can be character-
ized by d−1 angular variables), we can get an equation for
P (B, ei, x) = JP (Bi) where J = Bd−1 is the Jacobian of
the transformation. One should note that 〈B〉 is a suitable
order parameter contrary to 〈Bi〉, which can be null even
above the dynamo threshold (e.g. for a rotating magnetic
field with a constant norm). We now assume that there is
an uncoupling for P as P (B, ei) = P (B)G(ei, x), and per-
form an average over the angular variables, to find a closed
equation for P (B). In some sense, this can be regarded as a
mean-field argument where we average over the fast angu-
lar variables. This argument cannot be proved in the gen-
eral case but it has been checked in the case of a Duffing
oscillator [3]. The final equation for P (B) becomes:

∂P

∂t
= a

∂

∂B

[
B

∂

∂B
(BP )

]
−b

∂

∂B
(BP )+c

∂

∂B
(B3P ), (6)

where the coefficients are given by averages over the posi-
tion and the angular variables 〈•〉φ =

∫ • G(e,x) dxde:

a = 〈µijkleiejekel〉φ (7)
b = 〈∂kV̄ieiek〉φ + 〈µijkl(∆ikejel + ∆kjeiel)〉φ,

where we used ∆ij = ∂ei(ej) = δij−eiej an “angular Dirac
tensor”. One can notice that these coefficients only explic-
itly involve the tensor µ. Nevertheless, one must keep in
mind that the tensor α and β enter these expressions by
mean of the angular distribution G(ei, x), whose expres-
sion involves this two tensors in the general case. In the
derivation of equation (6), we use the following expression
for the gradient with respect to the magnetic field:

∂

∂Bi
(BkG) = eiek

∂

∂B
(B G) +

∂

∂, ei
(ekG), (8)

where the first part contains derivatives only with respect
to the radial variable and the last one with respect to the
angular ones. Using this decomposition in equation (3),
integrating with respect to x and e and making use of the
“integration by part on the angular variable”formula:

〈F (e)∂ei [ejG(e)]〉φ = (d − 1)〈eiekF (e)G(e)〉φ (9)
−〈∂ei [F (e)]ejG(e)〉φ,

leads to equation (6).

4 The dynamo threshold

An obvious stationary solution of (6) is a Dirac func-
tion, representing a solution with vanishing magnetic field.
Another stationary solution can be found by setting ∂tP =
0 in (6), with solution:

P (B) =
1
Z

Bb/a−1 exp
[
− c

2a
B2

]
, (10)

where Z is a normalization constant. This solution can
represent a meaningful probability density function only
if it can be normalized. This remark provides us with a
bifurcation threshold: there is dynamo whenever (10) is
integrable, i.e., when solution other than vanishing mag-
netic field are possible. Let’s us now comment again on
the choice we made for the particular form of the back
reaction. Instead of finding a particular form for the prob-
ability density function, we could have performed a local
analysis of equation (6). For B � 1, it is obvious that
the important terms in the right hand side are the one in-
volving a and b, which leads to P (B) ∝ Bb/a−1 for B � 1
irrespectively of the particular form of the saturating term
(if it is negligible compared to a linear term). The condi-
tion of existence for this solution we will discuss now is
thus the same as that for equation (10).

Condition of integrability at infinity of (10) requires a
be positive. This illustrates the importance of the non-
linear term which is essential to ensure vanishing of the
probability density at infinity. Condition of integrability
near zero requires b/a be positive. This leads us to iden-
tify a necessary and sufficient condition for existence of a
stationary dynamo as

a > 0 and
b

a
> 0 DY NAMO. (11)

In some sense, this bifurcation (I) is obtained using the
mean field as control parameter. Another bifurcation
threshold can be defined using the most probable field
as control parameter. Indeed, an elementary calculation
shows that the condition for a maximum in the PDF is
b > a. Therefore, the bifurcation threshold (II) with the
most probable field as control parameter is defined by
b = a. This difference may have some relevance when an-
alyzing real data from experiment.

To get some physical insight on the nature of this
two bifurcations, we performed simulations of a 1 dimen-
sional (1D) non-linear stochastic system:

∂tx = [b + ξ(t)]x − γx3 (12)
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Fig. 1. Result of the surrogate 1D model (12): On the left side
we show time series for a = 0.2, γ = 1 and 3 different values
of the parameter b. On the right side, the corresponding PDF
and the theoretical curve corresponding to equation (10).

with 〈ξ(t)ξ(t′)〉 = 2aδ(t − t′). Even if this model can-
not be seen as 1D version of our dynamo problem (there
is no dynamo effect for dimension lower than 2), they
share some common feature: they both have determinis-
tic and stochastic multiplicative excitations and damping.
Furthermore, it may be checked that the stationary PDF
in this case is exactly given by equation (10). The great
advantage of model (12) is that it can be easily solved
numerically. Therefore, we hope that the time series and
associated PDF are good illustration of the output of our
3D model, and the meaning of the two bifurcations dis-
cussed above. The time series and PDF for three different
values of the control parameter are shown in Figure 1.
The simulations show that the bifurcation (I) leads to an
intermittent behavior for the magnetic field reminiscent
of the characteristic behavior of instability in presence
of multiplicative noise: typically, the magnetic energy ex-
hibits bursts separated by long quiescent (zero magnetic
energy) period. On the contrary, the bifurcation (II) is
quite different in nature because of a well defined mean
value for the magnetic field and fluctuations around this
mean. The same type of behavior (transition to an inter-
mittent and fluctuating dynamo) has also been reported
for a 2D model of a solid dynamo in presence of multiplica-
tive noise [20] and we thus expect that it is reminiscent of
a bifurcation with multiplicative noise.

Equation (10) cannot rigorously capture these inter-
mittent states. However, two facts are very suggestive of
such a type of bifurcation in our solution: (a) the distri-
bution looks like a pure fluctuation distribution, with ill-
defined mean value; (b) the scaling for ‖B‖ � 1 (magnetic
energy) is the same as that of [6]: P (‖B‖) = ‖B‖γ with
γ = b/D − 1, where D is a “diffusion coefficient” for the
finite-time Lyapunov exponent. Note also that if we con-
sider the dynamo instability in absence of noise, a = 0,
the two bifurcation threshold collapse. As stated by [6],

the bifurcation corresponding to b > 0 may be difficult to
observe in real experiments because, under the threshold,
the presence of the Earth external magnetic field always
gives rise to magnetic fluctuations qualitatively similar to
that above the threshold (magnetic bursts separated by
quiescent period). This effect can be taken into account
by adding an additive noise to equation (1).

In the theory of dynamical systems stability, the insta-
bility criterion is usually associated with the existence of
a positive Lyapunov exponent for the growth of the sys-
tem energy: limt→∞ ln B2/2t = limt→∞ ln B/t. It is pos-
sible to find this exponent, by multiplying equation (6)
by lnB and integrating with respect to B. This yields
∂t〈ln B〉 = b, meaning that the Lyapunov exponent in our
system is equal to b. The two instability criteria (existence
of a normalizable solution or a positive Lyapunov expo-
nent) are therefore identical provided a > 0, a necessary
condition for integrability of the PDF at infinity.

5 Discussion

5.1 Diffusive effects

Our model does not take into account diffusive effects.
Their influence has been studied using other techniques,
such as random matrices [21] or variational principles [22].
In these contributions, two mechanisms of diffusive actions
have been evidenced, which find a counterpart in our noisy
system. It is therefore interesting to recall them now.

In the absence of any diffusion, magnetic field growth
is controlled by the stretching rate, namely the largest
eigenvalue of Sij = (1/2)(∂jVi + ∂iVj). Any initial mag-
netic field fluctuation will then grow and orientate itself
in the direction of the stretching rate. When diffusiv-
ity is present, new phenomena occur which may counter-
act or even cancel this growing mechanism. The dynamo
threshold is then determined by balance between these
impeding mechanisms and the growth induced by the
stretching. First, diffusive action orientates asymptotically
in time any solenoidal field such as the magnetic field
along the contracting direction, namely the smallest (neg-
ative) eigenvalue of Sij [21]. The limit induced by this
process (and then the dynamo threshold) is independent
of the diffusivity amplitude. Second, diffusivity damps the
magnetic field growth by an amount proportional to the
diffusive transport coefficient. The balance between this
damping and the kinematic growth results in a critical
magnetic Reynolds number, below which no dynamo is
possible [22].

5.2 Qualitative influence of noise

In the light of these results, it is now interesting to dis-
cuss qualitatively the meaning of our main result (11). It
is possible to show that for isotropic or axisymmetric ve-
locity fluctuations, the coefficient a is positive. So we sus-
pect that the main condition for existence of a dynamo is
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positivity of b. This coefficient is actually built from two
terms, that behave very differently through noise action.

The first term, b1 = 〈∂kV̄ieiek〉φ is not directly propor-
tional to noise intensity. The action of noise on that term is
mainly through vector orientation. In the absence of noise,
the magnetic field mainly grows in the direction given by
the largest eigenvalue of S̄ij = ∂j V̄i. Consider now a situa-
tion where one increases the noise level. This noise causes
arbitrary magnetic field orientation and may even induce
changes in the distribution of magnetic field orientation
through systematic effect. Therefore, b1 will decrease with
respect to its deterministic value. For example, if noise in-
duces a flat distribution for ei, then b1 = S̄ii = 0. Even
more dramatic results can be obtained if the noise tends
to align the vector along a direction of negative eigenvalue
for Sij , since in that case the factor b1 becomes negative,
with a lower bound given by the minimal (and negative)
eigenvalue of Sij . The action of noise through this mecha-
nism is therefore necessarily negative for dynamo action,
but bounded: it may not be increased to infinity by in-
creasing the noise intensity.

The second term of the Lyapunov b2 =
〈µijkl(∆ikejel + ∆kjeiel)〉φ is proportional to µ and
can actually be shown to be positive for isotropic or
axisymmetric velocity fluctuations. So, we believe that
in most circumstances, this term will tend to drive the
Lyapunov towards positive values, i.e. to favor dynamo
action. Contrarily to the orientation mechanism, this
additive effect is proportional to the noise intensity, and
can grow without limit: it can be made as large as possible
by increasing the noise intensity. On that basis, we expect
that, as the noise is slowly increased, this effect goes
from sub-dominant to dominant in the determination of
the Lyapunov exponent. One can also notice that the
tensor µ is proportional to the gradient of the fluctuating
part of the velocity field (the turbulence). Consequently,
it will be much more important for small-scale motions
compared to large scale ones. We can thus conclude that
small (fluctuating) scales of turbulence are probably very
important for the process of magnetic field generation
through dynamo action.

Increasing the noise intensity, one should then first
observe the (negative) orientation mechanism, i.e. a
threshold augmentation, followed by the (positive) addi-
tive effect, resulting in a decrease of the dynamo threshold.
This qualitative behavior is depicted in Figure 2. Such a
scenario is actually observed in another stochastic system
with multiplicative noise, the Duffing oscillator.

5.3 Comparison with mean field theory

It is important to notice that our approach determines
the dynamo threshold by means of the whole probability
density function of the magnetic field and not solely by the
study of the growth rate of one particular moment (as it
is the case in Mean Field Theory where one concentrates
for example on the growth of the mean magnetic field).
This necessity has already been evidenced in the context
of shell models of turbulence [23] where the intermittent
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Fig. 2. Schematic diagram of the influence of increasing the
noise intensity on the location of the dynamo threshold. For a
weak noise, there is a stabilization of the dynamo instability
whereas for strong noise, instability occurs for lower value of
the control parameter.

behavior of the magnetic field prevents the description of
the late stage of MHD turbulence by average quantities.

Moreover, our approach gives a quantitative criterion
on the dynamo threshold (namely b > 0). However, its
practical implementation requires the measure on the an-
gular and position variables G(x,n, t) and the average
of the tensor µ with this measure. One can obtain the
measure by integrating equation (3) with respect to B.
Unfortunately the equation for G can not be solved in
the general case and particular types of turbulence statis-
tics have to be considered (isotropic, axisymmetric, etc...).
Work is under progress to determine the angular mea-
sure in these simple cases. It is however interesting to
note that this measure explicitly involves the tensors α
and β defined in (4) and appearing in the Mean Field
Equations (5). In that sense, the dynamo threshold de-
pends on these tensors, albeit in a less explicit way than
in the Mean Field Equations (MFE). It would therefore
be interesting to confront threshold derived from (MFE),
which are µ independent, and from our theory, to see what
kind of error in the threshold determination one can ex-
pect by using MFE instead of the true, non-perturbative
theory.
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16. F. Pétrélis, Ph.D. Thesis, Paris VI, (2002); S. Fauve,

F. Petrelis, The dynamo effect, in Peyresq Lectures on
Nonlinear Phenomena (World Scientific, 2003)

17. S. Pavel, S. Berloff, J.C. McWilliams, J. Phys. Oceanogr.
32, 797 (2002)

18. J. Zinn-Justin, Quantum Field Theory and Critical
Phenomena (Oxford, 2002)

19. H.K. Moffatt, Magnetic field generation in electrically con-
ducting fluids (Cambridge University Press, 1978)

20. N. Leprovost, Ph.D. Thesis, Paris VI (2004)
21. M. Chertkov, G. Falkovich, I. Kolokolov, M. Vergassola,

Phys. Rev. Lett. 83, 4065 (1999)
22. G. Backus, Ann. Phys. 4, 372 (1958)
23. T. Antonov, S. Lozkhin, P. Frick, D. Sokoloff,

Magnetohydrodynamics 37, 87 (2001)


